Using the Dugdale approximation to match a specific interaction in the adhesive contact of elastic objects.

نویسندگان

  • Zhijun Zheng
  • Jilin Yu
چکیده

In the Maugis-Dugdale model of the adhesive contact of elastic spheres, the step cohesive stress sigma(0) is arbitrarily chosen to be the theoretical stress sigma(th) to match that of the Lennard-Jones potential. An alternative and more reasonable model is proposed in this paper. The Maugis model is first extended to that of arbitrary axisymmetric elastic objects with an arbitrary surface adhesive interaction and then applied to the case of a power-law shape function and a step cohesive stress. A continuous transition is found in the extended Maugis-Dugdale model for an arbitrary shape index n. A three-dimensional Johnson-Greenwood adhesion map is constructed. A relation of the identical pull-off force at the rigid limit is required for the approximate and exact models. With this requirement, the stress sigma(0) is found to be k(n)Deltagamma/z(0), where k(n) is a coefficient, Deltagamma the work of adhesion, and z(0) the equilibrium separation. Hence we have sigma(0) = 0.588Deltagamma/z(0), especially for n=2. The prediction of the pull-off forces using this new value shows surprisingly better agreement with the Muller-Yushchenko-Derjaguin transition than that using sigma(th) = 1.026Deltagamma/z(0), and this is true for other values of shape index n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust strategies for automated AFM force curve analysis-II: adhesion-influenced indentation of soft, elastic materials.

In the first of this two-part discourse on the extraction of elastic properties from atomic force microscopy (AFM) data, a scheme for automating the analysis of force-distance curves was introduced and experimentally validated for the Hertzian (i.e., linearly elastic and noninteractive probe-sample pairs) indentation of soft, inhomogeneous materials. In the presence of probe-sample adhesive int...

متن کامل

Adhesive interactions of viscoelastic spheres

We develop an analytical theory of adhesive interaction of viscoelastic spheres in quasistatic approximation. Deformations and deformation rates are assumed to be small, which allows for the application of the Hertz contact theory, modified to account for viscoelastic forces. The adhesion interactions are described by the Johnson, Kendall, and Roberts theory. Using the quasistatic approximation...

متن کامل

An atomic interaction-based continuummodel for adhesive contact mechanics

A micro/nano-scale computational contact mechanics model is proposed to study the adhesive contact between deformable bodies. To model adhesive contact, an interatomic interaction potential is incorporated into the framework of nonlinear continuum mechanics. The ensuing contact model is cast into an efficient finite element formulation which is implemented using an updated Lagrangian approach. ...

متن کامل

Numerical Computation of Rolling Resistance Based on the Result of Tire/Road Static Contact Analysis

Among various dissipating mechanisms, the viscoelastic effect of rubber material on creation of rolling resistance is responsible for 10-33% dissipation of supplied power at the tire/road interaction surface. So, evaluating this kind of loss is very essential in any analysis concerned with improving the fuel consumption of vehicles and resultantly energy savage. Hysteretic loss is a fraction of...

متن کامل

Investigation of the Model of Microscopic Contact Parameters for Grinding M200 Using Elastic Abrasive Tool

In this study; utilizing the elastic matrix ball has higher processing efficiency and better superficial quality than traditionalgrinding. The diversity of elastic abrasive tool characteristics contact with bend surface results in irregular wear abrasion,and abrasive tool machining status gets complicated. There is no theoretical interpretation of parameters affecting the grinding accuracy. Bec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 310 1  شماره 

صفحات  -

تاریخ انتشار 2007